WISSENSCHAFT

WAS IST HYPOXIE UND WIE WIRD SIE GENUTZT

Unter Hypoxie versteht man einen Sauerstoffmangel im Gewebe, z.B. in der Muskulatur während eines Trainings in Bezug auf die Bedürfnisse des Körpers. (Aerobe u. Anaerobe Energiegewinnung).

Die Exposition des Körpers während eines Hypoxietraining, in der Ruhephase als auch mit der Kombination mit physischer Belastung, aktiviert zahlreiche adaptive Mechanismen im Organismus. Diese Veränderungen erhöhen in Verbindung mit sportlicher Aktivität,  die Wirksamkeit traditioneller Trainings- und Therapiemethoden. Der Hauptregulator des Anpassungsverlaufs an die Hypoxie in den Zellen, ist der hypoxie induzierbare Faktor (HIF). Dieser Faktor gilt als Aktivator von mehr als hundert Genen im menschlichen Körper. Diese Tatsache begründet das breite Anwendungsspektrum der Hypoxie als Leistungsstimulierendes und therapeutisches Mittel.

Der Einsatz des Höhentrainings ist den Leistungssportlern auf der ganzen Welt bekannt. Das Training in den Bergen verbessert auf natürlichen Wegen, die Effizienz der Funktionsweise des Organismus unter physischer Belastung. Das an die „dünne Luft“ angepasste Training, ermöglicht es den Spitzensportlern und auch Ihnen Rekorde in ihren Disziplinen zu schlagen.

 

HYPOXIE IN DER PRÄVENTION UND UNTERSTÜTZUNG DER BEHANDLUNG VON TYP-II-DIABETES

  • Wang Y, Wen L, Zhou S, Zhang Y, Wang XH, He YY, Davie A, Broadbent S. 2018. Effects of four weeks intermittent hypoxia intervention on glucose homeostasis, insulin sensitivity, GLUT4 translocation, insulin receptor phosphorylation, and Akt activity in skeletal muscle of obese mice with type 2 diabetes. PLoS One.10;13(9):e0203551. doi:10.1371/journal.pone.0203551.
  • O’Donnell C.P. 2007. Metabolic Consequences Of Intermittent Hypoxia. In: Roach R.C., Wagner P.D., Hackett P.H. (eds) Hypoxia and the Circulation. Advances in Experimental Medicine and Biology, vol 618. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75434-5_4
  • Serebrovska TV, Portnychenko AG, Drevytska TI, Portnichenko VI, Xi L, Egorov E, Gavalko AV, Naskalova S, Chizhova V, Shatylo VB. 2017. Intermittent hypoxia training in prediabetes patients: Beneficial effects on glucose homeostasis, hypoxia tolerance and gene expression. Exp Biol Med (Maywood). 2017 Sep;242(15):1542-1552. doi: 10.1177/1535370217723578.
  • Fuller NR, Courtney R, 2016. A case of remission from pre-diabetes following intermittent hypoxic training, Obesity Research & Clinical Practice 10(4), 487-491. https://doi.org/10.1016/j.orcp.2016.05.008.
  • Kim SW, Jung WS, Chung S, Park HY. 2021. Exercise intervention under hypoxic condition as a new therapeutic paradigm for type 2 diabetes mellitus: A narrative review. World J Diabetes 2021; 12(4): 331-343. DOI: 10.4239/wjd.v12.i4.331

HYPOXIE IN DER PRÄVENTION UND UNTERSTÜTZUNG DER BEHANDLUNG VON ÜBERGEWICHT

  • Lizamore C. A., Hamlin M. J., 2017. The use of simulated altitude techniques for beneficial cardiovascular health outcomes in nonathletic, sedentary, and clinical populations: a literature review. High Alt. Med. Biol. 18, 305-321.
  • Park H.Y., Lim K., 2017. The effects of aerobic exercise at hypoxic condition during 6 weeks on body composition, blood pressure, arterial stiffness, and blood lipid level in obese women. Int. J. Sports Sci. 1, 1-5.
  • Park H.Y., Kim J., Park M.Y., Chung, N., Hwang H., Nam S.S. 2018. Exposure and exercise training in hypoxic conditions as a new obesity therapeutic modality: a mini review. J. Obes. Metab. Syndr. 27, 93-101.
  • Kayser B., Verges S., 2013. Hypoxia, energy balance and obesity: from pathophysiological mechanisms to new treatment strategies. Obes. Rev. 14, 579-592.
  • Millet G. P., Debevec T., Brocherie F., Malatesta D., Girard O., 2016. Therapeutic use of exercising in hypoxia: promises and limitations. Front. Physiol. 7, doi:10.3389/fphys.2016.00224.

HYPOXIE BEI DER PRÄVENTION UND UNTERSTÜTZUNG DER BEHANDLUNG VON HERZ-KREISLAUF-ERKRANKUNGEN

  • Serebrovskaya T. V., Manukhina E. B., Smith M. L., Downey H. F., Mallet R. T., 2008. Intermittent hypoxia: cause of ortherapy for systemic hypertension? Exp. Biol. Med. 233, 627-650.
  • Kolář F., Oštádal B., 2004. Molecular mechanisms of cardiac protection by adaptation to chronic hypoxia. Physiol. Res. 53, 3-13.
  • Wang J. S., Chen L. Y., Fu L. L., Chen M. L., Wong M. K., 2007. Effects of moderate and severe intermittent hypoxia on vascular endothelial function and haemodynamic control in sedentary men. Eur. J. Appl. Physiol. 100, 127-135.
  • Nishiwaki M., Kawakami R., Saito K., Tamaki H., Takekura H., Ogita F., 2011. Vascular adaptations to hypobaric hypoxic training in postmenopausal women. J. Physiol. Sci. 61, 83-91.
  • Park H.Y., Lim K., 2017. The effects of aerobic exercise at hypoxic condition during 6 weeks on body composition, blood pressure, arterial stiffness, and blood lipid level in obese women. Int. J. Sports Sci. 1, 1-5.
  • Ezzati M., Horwitz M. E., Thomas D. S., Friedman A. B., Roach R., Clark T., 2011. Altitude, life expectancy and mortality from ischaemic heart disease, stroke, COPD and cancers: national population-based analysis of US counties. J. Epidemiol. Comm. Health 66, doi: 10.1136/jech.2010.112938.
  • Zembron-Lacny A., Tylutka A., Wacka E., Wawrzyniak-Gramacka E., Hiczkiewicz D., Kasperska A., Czuba M. 2020. Intermittent Hypoxic Exposure Reduces Endothelial Dysfunction. BioMed Res. Inter. Article ID 6479630, https://doi.org/10.1155/2020/6479630.
  • Wiśniewska A, Płoszczyca K, Czuba M. 2020. Changes in erythropoietin and vascular endothelial growth factor following the use of different altitude training concepts. J. Sports Med. Phys. Fitness 60. doi: 10.23736/S0022-4707.20.10404-3

HYPOXIE BEI DER VERBESSERUNG DER LEBENSQUALITÄT ÄLTERER MENSCHEN

  • Nishimura A., Sugita M., Kato K., Fukuda A., Sudo A., Uchida A., 2010. Hypoxia increases muscle hypertrophy induced by resistance training. Int. J. Sports Physiol. Perform. 5, 497-508.
  • Chycki J., Czuba M., Gołaś A., Zając A., Fidos-Czuba O., Młynarz A. Smółka W., 2016. Neuroendocrine responses and body composition changes following resistance training under normobaric hypoxia. J. Hum. Kinet. 53, 91-98.
  • Guner I., Uzun D. D., Yaman M. O. Genc H., Gelisgen R., Korkmaz G. G., Hallac M., Yelmen N., Sahin G., Karter Y., Simsek G., 2013. The effect of chronic long-term intermittent hypobaric hypoxia on bone mineral density in rats: role of nitric oxide. Biol. Trace Elem. Res. 154, 262-267.
  • Martinez-Guardado I., Ramos-Campo D. J., Olcina G. J., Rubio-Arias J. A., Chung L. H., Marin-Cascales E., Alcaraz P. E., Timón R., 2019. Effects of high-intensity resistance circuit-based training in hypoxia on body composition and strength performance. Eur. J. Sport Sci. 19, 1-11.
  • Schega L., Peter B., Brigadski T., Leßmann V., Isermann B., Hamacher D., Törpel A., 2016. Effect of intermittent normobaric hypoxia on aerobic capacity and cognitive function in older people. J. Sci. Med. Sport 19, 941-945.
  • Belikova M. V., Kolesnikova E. E., Serebrovskaya T. V., 2012. Intermittent hypoxia and experimental Parkinson’s disease. [W:] Intermittent hypoxia and human diseases. Xi L., Serebrovskaya T.V. (red.). Springer, London, 147-153.

HYPOXIE BEI DER UNTERSTÜTZUNG DER BEHANDLUNG VON ATEMWEGSERKRANKUNGEN

  • Serebrovskaia T. V., Mankovskaia I. N., Lysenko G. I., Swanson R., Belinskaia I. V., Oberenko O. A., Daniliuk S. V., 1998. A method for intermittent hypoxic exposures in the combined treatment of bronchial asthma patients. Lik. Sprava 6, 104-108.
  • Harrison C. C., Fleming J. M., Giles L. C., 2002. Does interval hypoxic training affect the lung function of asthmatic athletes. New Zeal. J. Sport. Med. 30, 64-67.
  • Vogtel M, Michels A. 2010. Role of intermittent hypoxia in the treatment of bronchial asthma and chronic obstructive pulmonary disease. Curr Opin Allergy Clin Immunol.10(3):206-13. doi: 10.1097/ACI.0b013e32833903a6. PMID: 20386436.
  • Burtscher M. 2012. Effects of Intermittent Hypoxic Training on Exercise Tolerance in Patients with Chronic Obstructive Pulmonary Disease. W: Xi L., Serebrovskaya T. (eds) Intermittent Hypoxia and Human Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-2906-6_10

HYPOXIE BEI NEUROLOGISCHEN ERKRANKUNGEN

  • Gonzalez-Rothi E. J., Lee K. Z., Dale E. A., Reier P. J., Mitchell G. S., Fuller D. D., 2015. Intermittent hypoxia and neurorehabilitation. J. Appl. Physiol. 119, 1455-1465.
  • Manukhina E. B., Downey H. F., Shi X., Mallet R. T., 2016. Intermittent hypoxia training protects cerebrovascular function in Alzheimer’s disease. Exp. Biol. Med. 241, 1351-1363.
  • Belikova M. V., Kolesnikova E. E., Serebrovskaya T. V., 2012. Intermittent hypoxia and experimental Parkinson’s disease. [W:] Intermittent hypoxia and human diseases. Xi L., Serebrovskaya T.V. (red.). Springer, London, 147-153
  • Manukhina E. B., Goryacheva A. V., Pshennikova M. G., Malyshev I. Y., Mallet R. T., Downey H. F., 2012. Protective effects of adaptation to hypoxia in experimental Alzheimer’s disease. [W:] Intermittent hypoxia and human diseases. Xi L., Serebrovskaya T.V. (red.). Springer, London, 155-171.
  • Gonzalez-Rothi E. J., Lee K. Z., Dale E. A., Reier P. J., Mitchell G. S., Fuller D. D., 2015. Intermittent hypoxia and neurorehabilitation. J. Appl. Physiol. 119, 1455-1465.
  • Piotrowicz, Z.; Chalimoniuk, M.; Płoszczyca, K.; Czuba, M.; Langfort, J. 2020 Exercise-Induced Elevated BDNF Level Does Not Prevent Cognitive Impairment Due to Acute Exposure to Moderate Hypoxia in Well-Trained Athletes. Int. J. Mol. Sci. 21, 5569.



ANWENDUNGEN